- inductive limit space
- индуктивное предельное пространство
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Space tether — Artist s conception of satellite with a tether Space tethers are cables, usually long and very strong, which can be used for propulsion, stabilization, or maintaining the formation of space systems by determining the trajectory of spacecraft and… … Wikipedia
Classifying space for U(n) — In mathematics, the classifying space for the unitary group U(n) is a space B(U(n)) together with a universal bundle E(U(n)) such that any hermitian bundle on a paracompact space X is the pull back of E by a map X → B unique up to homotopy. This… … Wikipedia
Direct limit — In mathematics, a direct limit (also called inductive limit) is a colimit of a directed family of objects . We will first give the definition for algebraic structures like groups and modules, and then the general definition which can be used in… … Wikipedia
Rigid analytic space — In mathematics, a rigid analytic space is an analogue of a complex analytic space over a nonarchimedean field. They were introduced by John Tate in 1962, as an outgrowth of his work on uniformizing p adic elliptic curves with bad reduction using… … Wikipedia
Inverse limit — In mathematics, the inverse limit (also called the projective limit) is a construction which allows one to glue together several related objects, the precise manner of the gluing process being specified by morphisms between the objects. Inverse… … Wikipedia
Nuclear space — In mathematics, a nuclear space is a topological vector space with many of the good properties of finite dimensional vector spaces. The topology on them can be defined by a family of seminorms whose unit balls decrease rapidly in size. Vector… … Wikipedia
LF-space — In mathematics, an LF space is a topological vector space V that is a countable strict inductive limit of Fréchet spaces. This means that for each n there is a subspace V n such that:# For all n , V n subset V {n+1};:# igcup n V n = V;:# Each V… … Wikipedia
Complex projective space — The Riemann sphere, the one dimensional complex projective space, i.e. the complex projective line. In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a … Wikipedia
Fréchet space — This article is about Fréchet spaces in functional analysis. For Fréchet spaces in general topology, see T1 space. For the type of sequential space, see Fréchet Urysohn space. In functional analysis and related areas of mathematics, Fréchet… … Wikipedia
Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… … Wikipedia
Order topology — In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets. If X is a totally ordered set, the order … Wikipedia